Gaussian Mixture Models for Probabilistic Classification of Breast Cancer
نویسندگان
چکیده
منابع مشابه
Subspace Gaussian mixture models for dialogues classification
The main objective of this paper is to identify themes from dialogues of telephone conversations in a real-life customer care service. In order to capture significant semantic content in spite of high expression variability, features are extracted in a large number of hidden spaces constructed with a Latent Dirichlet Allocation (LDA) approach. Multiple views of a spoke document can then be repr...
متن کاملProbabilistic Voice Conversion Using Gaussian Mixture Models
This paper explores the topic of voice conversion as explored in a joint project with Percy Liang (EECS, Berkeley). For our purposes, voice conversion is the process of modifying the speech signal of one speaker (source) so that it sounds as thought it had been pronounced by a different speaker (target). By using a Gaussian mixture model (GMM) to model the features of the source speaker, we can...
متن کاملADABOOST ENSEMBLE ALGORITHMS FOR BREAST CANCER CLASSIFICATION
With an advance in technologies, different tumor features have been collected for Breast Cancer (BC) diagnosis, processing of dealing with large data set suffers some challenges which include high storage capacity and time require for accessing and processing. The objective of this paper is to classify BC based on the extracted tumor features. To extract useful information and diagnose the tumo...
متن کاملHidden Markov and Gaussian mixture models for automatic call classification.
Automatic methods of classification of animal sounds offer many advantages including speed and consistency in processing massive quantities of data. Calculations have been carried out on a set of 75 calls of Northern Resident killer whales, previously classified perceptually (human classification) into seven call types, using, hidden Markov models (HMMs) and Gaussian mixture models (GMMs). Neit...
متن کاملTwo-way Gaussian mixture models for high dimensional classification
Mixture discriminant analysis (MDA) has gained applications in a wide range of engineering and scientific fields. In this paper, under the paradigm of MDA, we propose a two-way Gaussian mixture model for classifying high dimensional data. This model regularizes the mixture component means by dividing variables into groups and then constraining the parameters for the variables in the same group ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Cancer Research
سال: 2019
ISSN: 0008-5472,1538-7445
DOI: 10.1158/0008-5472.can-19-0573